
Quantitative Information Flow Analysis

Hauptseminar WS’2010/11

Sergey Grebenshchikov

June 30, 2011

Contents

1 Preliminaries 2
1.1 Secret information and information leaks 2
1.2 Programs and computations . 3

2 Exact static analysis 6
2.1 Qualitative information flow . 6
2.2 Refinement for leak discovery . 6
2.3 Quantitative information flow . 8

3 Approximation and randomization 9
3.1 Approximation of information leakage 10
3.2 Randomized approximation . 11

4 Approximative dynamic analysis 14
4.1 Assembly programs and computations 14
4.2 Dynamic tainting and bit-tracking . 14
4.3 Flow graphs . 15

Introduction

The goal of quantitative information flow (QIF) analysis is to quantify the amount
of sensitive information revealed (leaked) by a program. This problem is relevant
for any program that handles sensitive or secret data - anonymization protocols,
electronic voting, payment or banking systems, appointment organizers providing
busy/free data and networked multiplayer games, among others. In a nutshell, we
seek an answer to the question:

“How much information can an attacker gain about sensitive data from
a program’s observable behavior?”

In the following, we will present several approaches to this question.

1

1 Preliminaries

1.1 Secret information and information leaks

In order to describe the secret information a program leaks, we need to define what
we mean by “secret information”. One approach commonly taken (e.g in [4], [7])
is to consider program inputs consisting of a high (secret) and a low (public) part,
and assume the low input and the entire source code (i.e. transition system) and
output of a program to be public. In this presentation we assume the entire input
as secret and the entire output and source code as public.

Information-theoretic entropy

In order to quantify the information leaked by a program, we need to introduce a
quantitative measure of information. Information-theoretic entropy (also referred
to as Shannon entropy) [6] is such a measure.

Let (ΩX ,Pr) be a discrete probability space and Ω a measurable space. A random
variable X is a map ΩX → Ω. If the probability distribution of X is pX ∶ Ω→ [0,1],
we write X ∼ pX . For x ∈ Ω we use the suggestive notation Pr [X = x] for pX(x).
We denote the fact that a random variable Y has the same probability distribution
as a random variable X by writing Y ≃ X. A random variable can be obtained by
applying a function to another random variable. We write Y = f(X) for Y = f ○X.
We define the binary entropy H [X] of X as follows:

H [X] ∶= −∑
x∈Ω

Pr [X = x] log2 Pr [X = x] (1)

If X is the identity function idΩX
∶ ΩX → ΩX and is uniformly distributed on ΩX ,

i.e. ∀x ∈ ΩX ∶ Pr [X = x] = 1
∣ΩX ∣ , we can derive a simple expression for H [X]:

H [X] = − ∑
x∈ΩX

Pr [X = x] log2 Pr [X = x]

= 1

∣ΩX ∣ ∑x∈ΩX

log2 ∣ΩX ∣

= log2 ∣ΩX ∣

Entropy can be interpreted as describing uncertainty of the value of a random
variable. In the special case of binary entropy, H [X] is the average number of bits
needed to determine the value of X. The above result for a uniform distribution
matches our intuition: to identify an element out of a set of n equally probable
elements, we need log2 n bits.

Given two random variables X ∶ ΩX → Ω and Y ∶ ΩY → Ω′, we define the
conditional entropy H [X ∣Y = y] of X given the value y of Y as follows:

H [X ∣Y = y] ∶= −∑
x∈Ω

Pr [X = x∣Y = y] log2 Pr [X = x∣Y = y] (2)

The average conditional entropy of X given Y is the average of H [X ∣Y = y] over
y ∈ Ω′:

H [X ∣Y] ∶= ∑
y∈Ω′

Pr [Y = y] H [X ∣Y = y] (3)

Applying the definition of conditional probability, we can derive the following equa-
tion for H [U ∣V]:

H [U ∣V] = H [U,V]H [V]
The average conditional entropy H [X ∣Y] describes the uncertainty of the value of
X after observing the value of Y .

2

Example 1 (Conditional entropy). Let ΩX ∶= {1,2,3,4}. Consider the two random
variables X and Y :

X ∶ ΩX → ΩX Y ∶ ΩX → {0,1}

X = idΩX
Y =

⎧⎪⎪⎨⎪⎪⎩

0 X ≤ 2

1 otherwise.

Assume a uniform probability Pr [x] = 1
∣ΩX ∣ =

1
4

for all elementary events x ∈ ΩX .

The entropy of X is H [X] = log2 ∣ΩX ∣ = 2. Intuitively, observing the result of Y
gives us a binary distinction about the value of X, so for X ∣Y we expect an entropy
reduced by one bit. For the elementary and conditional probabilities we obtain:

Pr [Y = 0] = Pr [Y = 1] = 1

2

Pr [X = x∣Y = 0] =
⎧⎪⎪⎨⎪⎪⎩

1
2

x ≤ 2

0 otherwise.

Plugging the probabilities into the formulas for conditional entropy, we get:

H [X ∣Y = 0] = −
4

∑
x=1

Pr [X = x,Y = 0] log2 Pr [X = x,Y = 0]

= −
2

∑
x=1

1

4
log2

1

4
= 1

H [X ∣Y = 1] = −
4

∑
x=3

Pr [X = x,Y = 1] log2 Pr [X = x,Y = 1]

= −
4

∑
x=3

1

4
log2

1

4
= 1

For the average conditional entropy we obtain, as expected:

H [X ∣Y] = ∑
y∈{0,1}

Pr [Y = y] H [X ∣Y = y]

= 1

2
⋅ 1 + 1

2
⋅ 1 = 1

The remaining uncertainty of X is 1 bit.

1.2 Programs and computations

We consider programs P of the form P = (S, I ,F,T), where

� S is a set of program states

� I ⊆ S is a set of initial states

� F ⊆ S is a set of final states

� T is a set of transitions, such that for each τ ∈ T a transition relation ρτ ⊆ S×S
is given.

We define the program transition relation ρ of P as the union of its transition
relations:

ρ ∶= ⋃
τ∈T

ρτ

3

Using ρ, we can define the input-output relation ρIO of P as the transitive closure
of ρ, restricted to initial and final states:

ρIO ∶= ρ∗ ∩ (I × F)

We require that ρIO is a total function I → F, i.e.:

∀s ∈ I ∶ ∃1s
′ ∈ F ∶ (s, s′) ∈ ρIO

A final state s′ ∈ F is reachable from an initial state s ∈ I iff (s, s′) ∈ ρIO. We write
Freach for the set of reachable final states:

Freach ∶= {s′ ∈ F ∣ ∃s ∈ I ∶ s′ reachable from s} ⊆ F

For a final state s′ ∈ F, the preimage P−1 (s′) is the set of all initial states s from
which s′ is reachable:

P−1 (s′) ∶= {s ∈ I ∣ (s, s′) ∈ ρIO}

An execution step s
ρ→ s′ of P can be described using the post operator :

Post ∶ 2S×S × S→ 2S

Postρ (s ∈ S) ∶= {s′ ∈ S ∣ (s, s′) ∈ ρ}

The definition of Post naturally extends to sets of states:

Post ∶ 2S×S × (2S ∪ S)→ 2S

Postρ (X ⊆ S) ∶= {s′ ∈ S ∣ ∃s ∈ S ∶ (s, s′) ∈ ρ}

The set of reachable final states Freach can be computed by iterating Post:

Freach = F ∩ (
∞
⋃
k=0

Postkρ(I))

= F ∩ lfp (Postρ, I)

Computing the above fixpoint explicitly can be prohibitively expensive. This is due
to the large number of states of almost any practical program. We can, however,
employ approximative methods to remedy this problem.

Over-approximation of Freach

Abstract interpretation overcomes the limitations of explicit reachability compu-
tation by approximating the Post operator. This approximation is achieved by
abstracting sets of states. For a set X of states, an abstraction of X is a superset of
X. We compute abstractions using an abstraction function α ∶ 2S → 2S, a monotone
(w.r.t set inclusion) function that maps sets of states to abstractions. Instead of
iterating Postρ, we iterate the composition Postρ

♯ of Postρ with α:

Postρ
♯ ∶= α ○ Postρ

Freach
♯ ∶= F ∩ lfp (Postρ

♯, α(I))

By the monotonicity of α, the resulting set Freach
♯ is an over-approximation of Freach,

i.e.:
Freach ⊆ Freach

♯

The abstraction function α can be chosen such that the fixpoint can be computed
in a finite number of steps.

4

Under-approximation of Freach

Abstract interpretation does not yet provide practical approaches to under-approximation.
Instead, we symbolically execute a program for a selected set of initial states
{s1, . . . , sn} ⊆ I . We assume a symbolic execution of P on a initial state si yields a
tuple (πi, s′i) ∈ T + × F, where πi is a path si → s′i and s′i is the final state reached.
We can derive an under-approximation Freach

♭ of Freach by collecting the final states
encountered along the paths:

Freach
♭ ∶=

n

⋃
i=1

{s′ ∣ ∃s ∈ S ∶ (s, s′) ∈ (ρπi ∩ (I × F))}

We know each final state in Freach
♭ to be reachable in P . We obtain the inclusion:

Freach
♭ ⊆ Freach

We will use the methods from this section for the approximative QIF algorithms
in section 3.

Example 2 (Programs and computations). Consider the program given in Fig. 2.
The set of states is given by the set of valuations of program variables and the

0: byte f(byte x) { // 0 <= x <= 255;

1: byte ret=0;

2: if(x <= 127)

3: ret=x;

4: else

5: ret=0;

6: return ret;

}

Figure 1: Program for Example 2

program counter:

S = {⟨ret = u,x = v,pc = w⟩ ∣ u, v ∈ {0, ..,255} ,w ∈ {0, ..,6}}

The set I of initial states is given by

I = {s ∈ S ∣ s.pc = 0 ∧ s.ret = 0}

l0

l1

l3 l5

l6

τ0

τ1

τ3

τ2

τ4

ρτ0 ≡ pc = 0 ∧ 0 ≤ x ≤ 255 ∧ x′ = x ∧ ret′ = 0 ∧ pc′ = 1

ρτ1 ≡ pc = 1 ∧ x ≤ 127 ∧ x′ = x ∧ ret′ = x ∧ pc′ = 3

ρτ2 ≡ pc = 1 ∧ 128 ≤ x ∧ x′ = x ∧ ret′ = 0 ∧ pc′ = 5

ρτ3 ≡ pc = 3 ∧ x′ = x ∧ ret′ = ret ∧ pc′ = 6

ρτ4 ≡ pc = 5 ∧ x′ = x ∧ ret′ = ret ∧ pc′ = 6

ρIO = (pc = 0 ∧ 0 ≤ x ≤ 127 ∧ x′ = x ∧ ret′ = x ∧ pc′ = 6)∨
(pc = 0 ∧ 128 ≤ x ≤ 255 ∧ x′ = x ∧ ret′ = 0 ∧ pc′ = 6)

Figure 2: Transition system for Example 2

5

The set F of final states is given by

F = {s ∈ S ∣ s.pc = 6}

The set of T of transitions is given by T = {τ1, τ2, τ3, τ4} and is shown in Fig. 2
with the respective transition relations. The program returns values less than or
equal to 127 unchanged and returns 0 otherwise, thus the set Freach of reachable
final states is given by:

Freach = {s ∈ F ∣ 0 ≤ s.x ≤ 127 ∧ s.ret = x ∧ s.pc = 6}
∪ {s ∈ F ∣ 128 ≤ s.x ≤ 255 ∧ s.ret = 0 ∧ s.pc = 6}

2 Exact static analysis

In this section, we present the conceptual framework and algorithm for the exact
static QIF analysis method presented in [1]. This presentation differs from [1] in
that we assume no high/low structure on the program states.

2.1 Qualitative information flow

We use set partitions to characterize partial knowledge about the underlying set.
We call the elements of a partition blocks. A partition P of a set X models that
each x ∈ X is known up to its enclosing subset of X in P . We say that a partition
P is more precise than P ′ (in symbols: P ⊑ P ′) if each partition block of P is
contained in a partition block of P ′:

P ⊑ P ′ ∶⇐⇒ ∀A ∈ P ∶ ∃B ∈ P ′ ∶ A ⊆ B

Let P = (S, I ,F,T) be a program. We require that P implements a total function,
i.e. from each initial state we can reach exactly one final state and, as a consequence,
I = ⊍s′∈Freach

P−1 (s′). The preimage operator thus induces a partition Π on the set
of initial states I :

Π ∶= {P−1 (s′) ∣ s′ ∈ Freach}

We can qualitatively characterize the information a program reveals about its input
in terms of the partition Π. For example, Π = { I} models a program that does not
reveal any information about its input. On the other hand, Π = {{s} ∣ s ∈ I} models
a program that reveals its input completely.

2.2 Refinement for leak discovery

In order to construct the preimage partition Π, we compute an equivalence relation
≈⊆ I × I such that Π is equal to the set of equivalence classes of ≈:

Π = I / ≈= {[s]≈ ∣ s ∈ I}

Given a program P and an equivalence relation R ⊆ I × I , there is an information
leak with respect to R if there is a pair of paths π1, π2 corresponding to computations
that lead from R-equivalent initial states s1 ∼R s2 to inequal final states s′1 ≠ s′2:

LeakP (R,π1, π2) ≡
∃s1, s2 ∈ I ∶ ∃s′1, s′2 ∈ Freach ∶

(s1, s
′
1) ∈ ρπ1 ∧ (s2, s

′
2) ∈ ρπ2 ∧ s1 ∼R s2 ∧ s′1 ≠ s′2

6

A refinement algorithm

We construct ≈ by successively refining a candidate relation R. R is initialized to
the coarsest equivalence relation R0 = I × I – i.e. I /R0 = { I} – and then successively
refined until no more leaks can be discovered. This final relation is the largest
relation over I such that no leaks in the above sense exist. We refine a relation R
with leak paths π1, π2 by distinguishing between initial states that lead to different
output states along π1, π2. This is realized by splitting the equivalence classes of the
initial states by removing the corresponding tuples from the equivalence relation.
The refinement conjunct RefineP implementing this is shown in (4). The leak
discovery and refinement procedure is formalized in Algorithm 1.

RefineP (π1, π2) ≡ (4)

{(s1, s2) ∈ I × I ∣ ∀s′1, s′2 ∈ Freach ∶ ((s1, s
′
1) ∈ ρπ1 ∧ (s2, s

′
2) ∈ ρπ2)→ s′1 = s′2}

Algorithm 1 Disco – Information leak discovery

procedure Disco(P):
R ← I × I
while exists π1, π2 ∈ T + ∶ LeakP (R,π1, π2) do

R ← R ∩ RefineP (π1, π2)
≈← R ∪ id I

return ≈

Theorem 1. The set of equivalence classes of the relation R =Disco(P) computed
by Disco is the preimage partition Π:

Π = I /R

Proof. “⊆” Let X = P−1 (s′) ∈ Π for some s′ ∈ Freach. Let s1, s2 ∈ X. Since
we assume P implements a total function (i.e. {P−1 (s′) ∣ s′ ∈ Freach} is a
partition), no other final state t′ ∈ Freach, t

′ ≠ s′ is reachable from s1 or s2.
It follows that ∀π1, π2 ∈ T + ∶ (s1, s

′
1) ∈ ρπ1 ∧ (s2, s

′
2) ∈ ρπ2 → s′1 = s′2 = s′.

Since R is the largest relation such that this property holds for all pairs of
equivalent states, we obtain s1 ∼R s2. Since s1, s2 were chosen arbitrarily
from X, there exists an Y ∈ I /R such that X ⊆ Y . Assume there exists a
state t ∈ Y ∖X. Then ∀π1, π2 ∈ T + ∶ (s1, s

′
1) ∈ ρπ1 , (t, t′) ∈ ρπ2 → s′1 = t′. By

the above argument, however, t′ = s′1 = s′ and thus t ∈ P−1 (s′) = X. Thus
X = Y ∈ I /R.

“⊇” Let X ∈ I/R, s1, s2 ∈X, i.e. s1 ∼R s2. By construction of R, we have

∀π1, π2 ∈ T + ∶ ∀s′1, s′2 ∈ Freach ∶ (s1, s
′
1) ∈ ρπ1 ∧ (s2, s

′
2) ∈ ρπ2 → s′1 = s′2

Since P implements a total function, there exists one state s′ ∈ Freach, such
that ∀π1, π2 ∈ T + ∶ (s1, s

′
1) ∈ ρπ1 ∧ (s2, s

′
2) ∈ ρπ2 → s′1 = s′2 = s′. It follows

that {s1, s2} ⊆ P−1 (s′) and thus ∃Y = P−1 (t′) ∈ Π ∶ X ⊆ Y . As Π is a
partition of I and X and Y have a nonempty intersection, X = Y . Thus
X = Y = P−1 (s′) ∈ Π.

We have shown how to compute the preimage partition Π as the set of equivalence
classes of an equivalence relation ≈ ⊆ I × I . We will now utilize Π to express
quantitative information flow properties of the underlying program.

7

2.3 Quantitative information flow

In order to quantify the information leaked by a program, we model a program as
a set of random variables and use Shannon entropy as an information measure. We
derive a connection between the preimage partition Π and quantitative information
flow in terms of Shannon entropy.

Programs as random variables

Given a program P = (S, I ,F,T), we consider the probability space (I ,Pr) on the
set of program inputs I . In the following, we assume Pr constant on I , i.e. for all
initial states s ∈ I ∶ Pr [s] = 1

∣ I ∣ . We model the behaviour of a program using the

random variables U and V . The variable U ∶= id I ∶ I → I models the choice of
program input, while V ∶= ρIO(U) ∶ I → F models a computation of P . For s ∈ I and
s′ ∈ F, we can derive the following probabilities:

Pr [V = s′] = Pr [ρIO(U) = s′]

=
∣P−1 (s′)∣

∣ I ∣

Pr [U = s, V = s′] =
⎧⎪⎪⎨⎪⎪⎩

1
∣ I ∣ s ∈ P−1 (s′)
0 otherwise.

Pr [U = s∣V = s′] = Pr [U = s, V = s′]
Pr [V = s′]

=
⎧⎪⎪⎨⎪⎪⎩

1
∣P−1(s′)∣ s ∈ P−1 (s′)
0 otherwise.

Applying the concept of entropy outlined above, H [U] describes the uncertainty
of the program input. We assume that all input events have the same probability,
thus H [U] = log2 ∣ I ∣. The conditional entropy H [U ∣V = s′] describes the uncertainty
about the program input, given a specific program output. Using the probabilities
derived above, we can express H [U ∣V = s′] in terms of the size of the preimage set
P−1 (s′):

H [U ∣V = s′] = −∑
s∈ I

Pr [U = s∣V = s′]
´¹¹¸¹¹¹¶
=0 for s∉P−1(s′)

log2 Pr [U = s∣V = s′]

= ∑
s∈P−1(s′)

1

∣P−1 (s′)∣
log2 ∣P−1 (s′)∣

= ∣P−1 (s′)∣ ⋅ 1

∣P−1 (s′)∣
log2 ∣P−1 (s′)∣

= log2 ∣P−1 (s′)∣

Since we are interested in how much information the program reveals in general, we
consider the average conditional input entropy H [U ∣V] over all final states. Using
the expression for H [U ∣V = s′] derived above and the block sizes of the preimage

8

partition Π of I we obtain:

H [U ∣V] = ∑
s′∈F

Pr [V = s′]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0 for s′∉Freach

H [U ∣V = s′]

= ∑
s′∈Freach

∣P−1 (s′)∣
∣ I ∣

H [U ∣V = s′]

= ∑
s′∈Freach

∣P−1 (s′)∣
∣ I ∣

log2 ∣P−1 (s′)∣

= 1

∣ I ∣ ∑B∈Π
∣B∣ log2 ∣B∣

The last equation provides the connection between the quantitative (entropy) and
qualitative (preimage partition) viewpoints. Since V is fully determined by U , the
joint entropy H [U,V] of U and V equals the entropy H [U] of U , thus by the
equation derived above, we also obtain

H [U ∣V] = H [U,V] −H [V] = H [U] −H [V]

The information leakage L of a program is the reduction in uncertainty of the value
of the input U gained by observing an output V :

L ∶= H [U] −H [U ∣V] = H [V]

Using the expression for H [U ∣V] derived above, we can express L in terms of the
block sizes of the preimage partition:

L = log2 ∣ I ∣ − 1

∣ I ∣ ∑B∈Π
∣B∣ log2 ∣B∣

Example 3 (Information leakage). Again, consider the program from Example 2
given in Fig. 2. Since the program maps values x ≤ 127 to themselves and values
x ≥ 128 to 0, the preimage partition Π of P is given by

Π = {{s} ∣ s ∈ I ∧ 0 ≤ s.x ≤ 127} ∪ {{s ∣ s ∈ I ∧ 128 ≤ s.x ≤ 255}}

Using this and ∣ I ∣ = 256, we can compute the information leakage L of P :

H [U ∣V] = 1

∣ I ∣
⋅ ∑
B∈Π

∣B∣ ⋅ log2 ∣B∣

= 1

256
⋅ (128 ⋅ (1 ⋅ log2 1) + (127 ⋅ log2 127))

= 1

256
⋅ (127 ⋅ log2 127)

≈ 3.47 bit

L = log2 ∣ I ∣ −H [U ∣V] ≈ 8 − 3.47 = 4.53 bit

3 Approximation and randomization

In this section we utilize the formulation of information flow as reduction in Shannon
entropy derived above and present an approximative static QIF analysis method
from [3].

9

3.1 Approximation of information leakage

Computing the output entropy H [V] exactly requires computing the block sizes of
the preimage partition Π. In practice, this is often infeasible, even for finite-state
programs, due to the large number of program states. We will show that we can
approximate the block sizes of Π. Using this approximation, we can derive bounds
on H [V].

Approximation of the block sizes of the preimage partition Π

In order to approximate preimage partition block sizes of a program P , we also
need to approximate the input-output relation ρIO. In order to do this, we construct
an augmented program P = (S, I ,F,T), such that reachable final states in P keep
track of the corresponding initial states.

� S ∶= S × S

� I ∶= I × I

� F ∶= S × F

� T ∶= {τ ∣ τ ∈ T }, where ρτ ∶= {((s′′, s), (s′′, s′)) ∣ (s, s′) ∈ ρτ ∧ s′′ ∈ S}

The program relation ρ and reachability can be defined analogously:

ρ ∶= ⋃τ∈T ρτ Freach ∶= {(s, s′) ∈ F ∣ s ∈ I , s′ ∈ F, ((s, s), (s, s′)) ∈ ρ∗}
= ρIO

We can now apply the approximation methods described above to the augmented

program. Using abstract interpretation, we compute the over-approximation Freach
♯

of Freach:

Freach
♯ ∶= lfp (α ○ Postρ, α(I))

In order to compute the under-approximation Freach
♭
, we symbolically execute a

given set of program paths {π1, . . . , πn} of P . We obtain the inclusions:

Freach
♭ ⊆ Freach ⊆ Freach

♯

This can be used to approximate the block sizes of the preimage partition Π of P .

Let P ♭−1(s′),P ♯−1(s′) denote the sets of projections of each tuple – in Freach
♭

and

Freach
♯
, respectively – to the first component:

P ♭−1(s′) ∶= {s ∣ (s, s′) ∈ Freach
♭ } ⊆ I

P ♯−1(s′) ∶= {s ∣ (s, s′) ∈ Freach
♯ } ⊆ I

We thus have:
P ♭−1(s′) ⊆ P−1 (s′) ⊆ P ♯−1(s′)

and followingly:

∣P ♭−1(s′)∣ ≤ ∣P−1 (s′)∣ ≤ ∣P ♯−1(s′)∣

10

Approximation of input entropy

Using the approximations of P −1 obtained above, we can derive upper and lower
bounds for the conditional input entropy H [U ∣V] .

Lemma 1. For s′ ∈ Freach we define:

pV
♭ (s′) ∶= 1

∣ I ∣
max{∣P ♭−1(s′)∣,1}

pV
♯ (s′) ∶= 1

∣ I ∣
∣P ♯−1(s′)∣

Then pV ♭ and pV ♯ under- and over-approximate pV , i.e. for all s′ ∈ Freach:

pV
♭ (s′) ≤ Pr [V = s′] ≤ pV ♯ (s′)

Proof. Let s′ ∈ Freach. Above we have shown that Pr [V = s′] = ∣P−1 (s′)∣∣ I ∣−1
and

that ∣P ♭−1(s′)∣ and ∣P ♯−1(s′)∣ approximate ∣P−1 (s′)∣. Since s′ ∈ Freach, at least one

initial state leads to s′, thus ∣P−1 (s′)∣ ≥ 1. The statement follows.

Using the approximations obtained above, we can give lower and upper bounds on
H [V]. We show how to derive the lower bound:

H [V] = ∑
s′∈Freach

Pr [V = s′] (− log2 Pr [V = s′])

≥ ∑
s′∈Freach

♭

Pr [V = s′] (− log2 Pr [V = s′]) by Freach
♭ ⊆ Freach

≥ ∑
s′∈Freach

♭

Pr [V = s′] (− log2 pV
♯ (s′)) Monotonicity of − log2 on]0,1]

≥ ∑
s′∈Freach

♭

pV
♭ (s′) (− log2 pV

♯ (s′))

The upper bound follows similarly and we obtain:

− ∑
s′∈Freach

♭

pV
♭ (s′) log2 pV

♯ (s′)

≤ H [V] ≤
− ∑
s′∈Freach

♯

pV
♯ (s′) log2 pV

♭ (s′)

Above we have shown:
H [U ∣V] = H [U] −H [V]

Assuming U is uniformly distributed on I , we have H [U] = log2 ∣ I ∣. Using the
bounds on H [V] we can bound the value of H [U ∣V]:

log2 ∣ I ∣ + ∑
s′∈Freach

♯

pV
♯ (s′) log2 pV

♭ (s′)

≤ H [U ∣V] ≤
log2 ∣ I ∣ + ∑

s′∈Freach
♭

pV
♭ (s′) log2 pV

♯ (s′)

3.2 Randomized approximation

While the approximation methods above are effective in more cases than exact
computation, they require the enumeration of the over-approximation Freach

♯ of the
set Freach of reachable final states. This is frequently impractical due to the size of
that set. We will show that we can avoid this enumeration.

11

Estimating entropy

Our goal is to construct an sampling-based algorithm that can compute upper and
lower bounds for the conditional input entropy H [U ∣V]. Since H [U ∣V] = log2 ∣I ∣ −
H [V], it is sufficient to approximate the entropy H [V] of V . Thus, as a first step,
we show that we can construct an estimator for the entropy of a random variable.

Lemma 2. Let ∣Ω∣ =m, X ∶ ΩX → Ω,X ∼ pX a random variable, 0 < δ ∈ R, random
variables X1 ≃ ⋯ ≃Xn ≃X independent instances (i.e. samples) of X. Then

Pr [∣− 1

n

n

∑
i=1

log2 (Pr [X =Xi]) −H [X]∣ < δ] > 1 − log2m
2

nδ2

Proof. We define random variables Y,Yi ∶ ΩX → R, Y ≃ Yi for i = 1 . . . n by

Yi = − log2 (pX(Xi))

Each Yi is an unbiased estimator for the entropy H [X] of X:

E [Yi] = ∑
y∈R

Pr [Yi = y] ⋅ y = −∑
x∈Ω

Pr [X = x] ⋅ log2 (pX(x)) = H [X]

Consider a random variable Z that is the average of the Yi:

Z ∶= 1

n

n

∑
i=1

Yi

By linearity of the expectation value, E [Z] = H [X]. For the variance Var [Z] of Z
we obtain:

Var [Z] = 1

n
Var [Y]

In [2] it is shown that Var [Y] ≤ (log2m)2
, thus

Var [Z] ≤ (log2 (m))2

n

Let 0 < δ ∈ R. We can apply Chebyshev’s inequality:

Pr [∣Z −E [Z]∣ ≥ δ] ≤ Var [Z]
δ2

≤ (log2m)2

nδ2

Using E [Z] = H [X] and unfolding the definitions of Z and Yi, we obtain:

Pr [∣− 1

n

n

∑
i=1

log2 (pX(Xi)) −H [X]∣ < δ] > 1 − (log2m)2

nδ2

We have shown that, given the probability distribution of a random variable X, we
can use a sampling estimator Z to bound the entropy H [X] of X. The confidence

of p = 1 − (log2m)
2

nδ2
for H [X] ∈]Z − δ,Z + δ[allows us to judge the quality of the

estimation. Conversely, for a desired confidence p ∈ [0,1[and precision δ ∈]0,∞[we

can give the minimum number n = ⌈ (log2m)
2

(1−p)δ2 ⌉ of required samples.

12

A randomized algorithm

In order to bound the output entropy H [V] for output samples Xi ≃ V using the
estimator Z derived above, we would need to know the exact probability distribution
of V . This still requires the exact computation of preimage sizes. Our goal is to
avoid this. Instead, we can apply the approximations pV ♯ and pV ♭ of the probability
distribution pV of V from the previous section. In terms of the estimators Yi and
Z we derived above, we construct the following over- and under-approximations:

Y ♭
i ∶= − log2 (pV ♯(Xi)) ≤ Yi ≤ Y ♯

i ∶= − log2 (pV ♭(Xi))

Z♭ ∶= 1

n

n

∑
i=1

Y ♭
i ≤ Z ≤ Z♯ ∶= 1

n

n

∑
i=1

Y ♯
i

We obtain the following bounds on H [V]:

Z♭ − δ ≤ Z − δ < H [V] < Z + δ ≤ Z♯ + δ

Bounding H [U ∣V] using the bounds on H [V] we obtain:

H♭ ∶= log2 ∣ I ∣ −Z♯ ≤H [U ∣V] + δ
H [U ∣V] − δ ≤ log2 ∣ I ∣ −Z♭ =∶ H♯

By Lemma 2 these bounds are valid with a probability p > 1 − (log2 ∣ I ∣)
2

nδ2
. We can

simplify the approximations:

H♭ = log2 ∣ I ∣ −Z♯ = log2 ∣ I ∣ − 1

n

n

∑
i=1

− log2 (pV ♭ (Xi))

= log2 ∣ I ∣ + 1

n

n

∑
i=1

log2

⎛
⎜
⎝

∣P ♭−1(Xi)∣
∣ I ∣

⎞
⎟
⎠

= 1

n

n

∑
i=1

log2 (min{1, ∣P ♭−1(Xi)∣})

H♯ = log2 ∣ I ∣ −Z♭ = log2 ∣ I ∣ − 1

n

n

∑
i=1

− log2 (pV ♯ (Xi))

= log2 ∣ I ∣ + 1

n

n

∑
i=1

log2

⎛
⎜
⎝

∣P ♯−1(Xi)∣
∣ I ∣

⎞
⎟
⎠

= 1

n

n

∑
i=1

log2 (∣P ♯−1(Xi)∣)

The estimation procedure derived above is formalized in Algorithm 2.

Algorithm 2 Rant – Randomized quant ification

procedure Rant(P , p, δ):
(H♭,H♯, n)← (0,0, ⌈ (log2 ∣ I ∣)

2

(1−p)δ2 ⌉)
for i = 1 . . . n do

si ← pick randomly from I
(πi, s′)← execute P symbolically on si
H♭ ← H♭ + log2 ∣ρ−1

πi
(s′)∣

H♯ ← H♯ + log2 ∣P ♯−1(s′)∣

return (H♭

n
, H♯

n
)

13

Theorem 2. For (H♭,H♯) = Rant(P , p, δ) the following holds:

Pr [H♭ − δ ≤ H [U ∣V] ≤ H♯ + δ] ≥ p

Proof. Rant computes the over-approximation H♯ and under-approximation H♭ of

the entropy estimator H = log2 ∣ I ∣ − Z for n = ⌈ (log2 ∣ I ∣)
2

(1−p)δ2 ⌉ samples. The statement

follows from Lemma 2 and the construction of H♯ and H♭.

4 Approximative dynamic analysis

The methods presented in the previous sections are static analysis methods – they
bound the information leakage of a program for all possible executions. In this
section, we present a dynamic analysis method described in [5]. The goal is to
provide a sound upper bound on the information leakage of a single execution.
Additionally, the method provides for a way of combining the results of several
single-execution analyses to obtain more general bounds.

4.1 Assembly programs and computations

We consider assembly-like programs defined by the grammar shown in Fig. 3. The
element reg represents a register identifier, addr: reg represents the usage of the
value of a register as a memory address. A register identifier on the left-hand side
of an assignment represents the register as a variable, a register identifier on the
right-hand side represents its value. The input instruction writes a (secret) input
value to a register, output makes the contents of a register public.

r ∈ reg ∶∶= rn ∶ n ∈ N
c ∈ cst ∶∶= n ∈ N

○ ∈ binop ∶∶= + ∣ and ∣ xor

i ∈ instr ∶∶= reg ∶= cst

∣ reg ∶= reg

∣ reg ∶= reg ○ reg ∶ ○ ∈ binop

∣ reg ∶= load (addr ∶ reg)
∣ store (addr ∶ reg) reg

∣ output reg

∣ input reg

∣ if reg ≥ 0 goto cst

p ∈ program ∶∶= ε ∣ instr program

Figure 3: Syntax for a minimal imperative language

4.2 Dynamic tainting and bit-tracking

Dynamic tainting analysis computes the secrecy status for each piece of data occur-
ring during program execution. A piece of data is considered tainted if it contains
secret information. The amount of information leaked by the program is bounded
by the number of secret bits present in the program’s output. Tainting can be com-
puted on various levels of granularity – variables, bytes and individual bits could

14

be marked as secret. Once a piece of data is marked as secret, any operation on
it must be instrumented to compute the secrecy status of the result. In the case
of bit-level tainting, this is referred to as bit-tracking. Each register and memory
location is associated with a secrecy bit mask which specifies which of its bits are
marked as secret. Examples of bit-tracking formulas for several bit-level operations
are given in [5].

4.3 Flow graphs

In order to model dynamic QIF analysis as a maximum-flow problem, we construct
a directed acyclic graph, which we refer to as the flow graph. The flow graph has
potentially secret pieces of information as its vertices (nodes). The edges connecting
the nodes have capacities that model how much secret information can flow from
one piece of data to another.

The edge capacities are additionally bounded by a bit-tracking analysis. Each
vertex is associated with the secrecy bit mask of the piece of data it represents. An
edge originating from a vertex v can carry at most as many bits of secret information
as are set in the secrecy bit mask of v.

The introduction of secret information through input instructions is modeled
as an edge from a special source node to a new node representing the input data.
The revelation of potentially secret information by output instructions is modeled
as an edge to a special sink node. The information leakage of a program is bounded
by the maximum flow from the source node to the sink node.

The graph is constructed dynamically by keeping track of the source of each
piece of data during an execution. In the algorithm InstrFlow presented below,
this is implemented by mapping each register and memory location to a vertex
of the flow graph and updating this mapping upon any modification of data. An
example of a flow graph for a specific program execution is given in Fig. 4.

Combining flow graphs

Flow graphs corresponding to different executions of a program can be merged to
obtain bounds that are valid for several executions. This is done by identifying
edges corresponding to a particular program location in all graphs and merging the
source nodes and destination nodes to obtain two nodes and one edge for each set
of original edges and nodes. The capacity of the merged edge is the sum of the
capacities of the original edges. Finally, the source and sink nodes of all graphs are
merged to obtain new sink and source nodes.

Implicit and explicit flows

An explicit flow of secret information is one that occurs by copying or mapping over
secret data (for example in the assignment ri ∶= rj ○rk, where either of the operands
is secret, secret information explicitly flows from the operands to ri). An implicit
flow occurs when secret information is revealed indirectly. In the language defined
above, this applies to case distinctions over the contents of registers containing
secret data (if ri ≥ 0 goto c).

We over-approximate the secret information flow for the conditional goto as an
additional 1 bit of flow to any of the following output statements. This captures
the intuition that the result of the comparison might affect the value of any publicly
visible register. We account for implicit flows by adding a chain of “leak nodes”, to
which implicit flows from comparisons on registers are directed.

On each output operation, a new node representing the output information is
created and an edge from the current leak node to the output node is added. This

15

0 ∶ input r1

1 ∶ input r2

2 ∶ if r2 ≥ 0 goto 4

3 ∶ output r2

4 ∶ r3 ∶= r2 + r1

5 ∶ output r3

Figure 4: Example program (using 8-bit registers) and the flow graph correspond-
ing to an execution with inputs (-1,0). The upper bound on information leakage,
computed as maximum flow, is 9 bits. The labels “node[r i]” refer to the node map
explained in the presentation of the construction algorithm.

models the possibility that a previous comparison on secret data might have an
effect on the output value. A new leak node is created and an unbounded edge is
added between the old and new leak node to allow implicit flows to propagate to
later outputs.

Instrumentation for flow graph construction

The algorithm InstrFlow for incremental construction of the flow graph is pre-
sented in Algorithm 3. The program is instrumented such that InstrFlow is
applied to every instruction encountered. For each register and memory location,
we keep track of the source of the information it contains. The map node associates
a register ri ∈ reg or memory location (addr ∶m) ∈ addr with its node (v,bits). The
node contains the vertex v ∈ V in the flow graph and the secrecy bitmask bits ∈ (N0

mod 2regbits) for its contents.
When a value is to a register, the register’s node mapping is set to the node of

the rhs value. If a register or memory location is modified, a new node is created.
The node n corresponding to the original information is connected to the node
n′ representing the modified data and the node map is updated accordingly. The
capacity c of the new edge n→c n′ is at most the number #(n.bits) of set bits in the
secret bit mask of its source node. Implicitly, a new edge n→c n′ represents a new
edge n.v →c n′.v. Binary operations are treated analogously. Source, sink and leak
nodes are treated as special cases: edges between leak nodes as well as edges to the

16

sink node are unbounded, edges from leak nodes to output nodes have a capacity
of 1.

Enclosure regions

Additionally to the algorithm InstrFlow presented above, the method in [5] im-
plements enclosure regions, specified by source code annotations. An enclosure
region denotes the restriction of implicit flows within a part of the source code to
explicitly specified “output locations”. Implicit flows occurring within an enclosure
region can only affect the values of the region’s defined output locations. When
the enclosure annotations are correct, this method can improve precision while still
retaining the soundness of the upper bound on information leakage.

Conclusion

We have presented exact and approximative static methods as well as an approxima-
tive dynamic method to quantify information flow properties of programs. While
the exact static analysis method [1] yields precise results, it generally cannot be
applied in practice due to prohibitive computational cost.

The approximative dynamic analysis method [5] only produces an upper bound
on the information leaked by a program for a finite set of program paths, but is
computationally cheap and can be applied to pre-compiled binaries.

Randomized approximative static analysis (as presented in [3]) generates upper
and lower bounds on information leakage over all paths. Additionally, the method
allows a controlled cost-versus-precision trade-off. By providing statistical quality
guarantees, it allows the user to judge the tightness and validity of the generated
bounds to enable meaningful decisions with respect to an information flow policy.

References

[1] Michael Backes, Boris Köpf, and Andrey Rybalchenko. Automatic Discovery
and Quantification of Information Leaks. In Proc. IEEE Symp. on Security and
Privacy (S&P ’09), pages 141–153. IEEE, 2009.

[2] Tugkan Batu, Sanjoy Dasgupta, Ravi Kumar, and Ronitt Rubinfeld. The com-
plexity of approximating entropy. In Proc. ACM Symp. on Theory of Computing
(STOC ’02), pages 678–687. ACM, 2002.

[3] Boris Köpf and Andrey Rybalchenko. Approximation and randomization for
quantitative information-flow analysis. In Proceedings of the 23rd IEEE Com-
puter Security Foundations Symposium, CSF 2010, Edinburgh, United Kingdom,
July 17-19, 2010, pages 3–14, 2010.

[4] Pasquale Malacaria. Assessing security threats of looping constructs. In Proc.
Symp. on Principles of Programming Languages (POPL ’07), pages 225–235.
ACM, 2007.

[5] Stephen McCamant and Michael D. Ernst. Quantitative information flow as
network flow capacity. In Proc. ACM Conf. on Programming Language Design
and Implementation (PLDI ’08), pages 193–205. ACM, 2008.

[6] Claude E. Shannon. A Mathematical Theory of Communication. Bell System
Technical Journal, 27:379–423 and 623–656, July and October 1948.

17

[7] Geoffrey Smith. On the foundations of quantitative information flow. In Proc.
Intl. Conf. of Foundations of Software Science and Computation Structures
(FoSSaCS ’09), LNCS 5504, pages 288–302. Springer, 2009.

18

Algorithm 3 InstrFlow(i ∈ instr)
vars

const regbits ∈ N : length of a register in bits
global V ⊇ {sink, source,public} , E ⊆ V2 ×N0 : nodes, edges with capacities
global leak ∈ V
global node ⊆ (reg ∪ addr) × V × (N0 mod 2regbits)

end vars
begin

match i with
∣ ri ∶= c →

node[ri] ∶= public
∣ ri ∶= rj →

node[ri] ∶= node[rj]
∣ ri ∶= rj ○ rk →

begin
m,n ∶= fresh nodes
n.bits ∶=m.bits ∶= opBits((○), rj , rk)
c1 ∶= #(node[rj].bits)
c2 ∶= #(node[rk].bits)
c3 ∶= #(n.bits)
E ∶= E ∪ {(node[rj]→c1 n), (node[rk]→c2 n), (n→c3 m)}
node[ri] ∶=m

end
∣ input ri →

begin
n ∶= fresh node with n.bits = (1regbits)2

node[ri] ∶= n
E ∶= E ∪ {(source→regbits n)}

end
∣ output ri →

begin
n, l ∶= fresh nodes
c ∶= #(node[ri].bits)
E ∶= E ∪ {(node[ri]→c n), (leak→∞ n), (leak→∞ l), (n→∞ sink)}
leak ∶= l

end
∣ if ri ≥ 0 goto loc →

E ∶= E ∪ {(node[ri]→1 leak)}
∣ store (addr :ra) rv →

node[addr ∶ ra] ∶= node[rv]
∣ ri ∶= load (addr :ra) →

node[ri] ∶= node[addr ∶ ra]

end.

19

